Electron acceleration during streamer collisions in air
نویسندگان
چکیده
High-voltage laboratory experiments show that discharges in air, generated over a gap of one meter with maximal voltage of 1 MV, may produce X-rays with photon energies up to 1 MeV. It has been suggested that the photons are bremsstrahlung from electrons accelerated by the impulsive, enhanced field during collisions of negative and a positive streamers. To explore this process, we have conducted the first self-consistent particle simulations of streamer encounters. Our simulation model is a 2-D, cylindrically symmetric, particle-in-cell code tracing the electron dynamics and solving the space charge fields, with a Monte Carlo scheme accounting for collisions and ionization. We present the electron density, the electric field, and the velocity distribution as functions of space and time. Assuming a background electric field 1.5 times the breakdown field, we find that the electron density reaches 2·1021 m-3, the size of the encounter region is ∼3·10-12 m3 and that the field enhances to ∼9 times the breakdown field during ∼10-11 s. We further find that the radial component becomes comparable to the parallel component, which together with angular scattering leads to an almost isotropic distribution of electrons. This is consistent with laboratory observations that X-rays are emitted isotropically. However, the maximum energy of electrons reached in the simulation is ∼600 eV, which is well below the energies required to explain observations. The reason is that the encounter region is small in size and duration. For the photon energies observed, the field must be enhanced in a larger region and/or for a longer time.
منابع مشابه
Radio Frequency Electromagnetic Radiation From Streamer Collisions
We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer colli...
متن کاملEffects of photoionization on propagation and branching of positive and negative streamers in sprites
[1] Modeling studies indicate that double-headed streamers originating from single electron avalanches in lightning-driven quasi-static electric fields at mesospheric altitudes accelerate and expand, reaching transverse scales from tens to a few hundreds of meters and propagation speeds up to one tenth of the speed of light, in good agreement with recent telescopic, high-speed video and multich...
متن کاملBranching and path-deviation of positive streamers resulting from statistical photon transport
The branching and change in direction of propagation (path-deviation) of positive streamers in molecular gases such as air likely require a statistical process which perturbs the head of the streamer and produces an asymmetry in its space charge density. In this paper, the mechanisms for path-deviation and branching of atmospheric pressure positive streamer discharges in dry air are numerically...
متن کاملMonte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders
[1] Streamers are thin filamentary plasmas that can initiate spark discharges in relatively short (several centimeters) gaps at near ground pressures and are also known to act as the building blocks of streamer zones of lightning leaders. These streamers at ground pressure, after 1/N scaling with atmospheric air density N, appear to be fully analogous to those documented using telescopic imager...
متن کاملA pr 2 00 8 Positive and negative streamers in ambient air : modeling evolution and velocities
We simulate short positive and negative streamers in air at standard temperature and pressure. They evolve in homogeneous electric fields or emerge from needle electrodes with voltages of 10 to 20 kV. The streamer velocity at given streamer length depends only weakly on the initial ionization seed, except in the case of negative streamers in homogeneous fields. We characterize the streamers by ...
متن کامل